Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation

Nature Metabolism 2022 4, pages 213–224 (2022)

Bryon Silva, Olivier L. Mantha, Johann Schor, Alberto Pascual, Pierre-Yves Plaçais, Alice Pavlowsky & Thomas Preat

Abstract

During starvation, mammalian brains can adapt their metabolism, switching from glucose to alternative peripheral fuel sources. In the Drosophila starved brain, memory formation is subject to adaptative plasticity, but whether this adaptive plasticity relies on metabolic adaptation remains unclear. Here we show that during starvation, neurons of the fly olfactory memory centre import and use ketone bodies (KBs) as an energy substrate to sustain aversive memory formation. We identify local providers within the brain, the cortex glia, that use their own lipid store to synthesize KBs before exporting them to neurons via monocarboxylate transporters. Finally, we show that the master energy sensor AMP-activated protein kinase regulates both lipid mobilization and KB export in cortex glia. Our data provide a general schema of the metabolic interactions within the brain to support memory when glucose is scarce.


Top



See also...

An inhibitory hippocampal–thalamic pathway modulates remote memory retrieval

Nat Neurosci 2021 May;24(5):685-693. Gisella Vetere, Frances Xia, Adam I Ramsaran, Lina M Tran, Sheena A Josselyn, Paul W Frankland. Abstract (...) 

> More...

Nouvelle traduction : Semaine du cerveau : Conférence experimental de A. Mourot

Photopharmacologie: que la lumière soigne Conference by Alexandre Mourot, as part of the brain week, in Paris at the Institut Pierre-Gilles de (...) 

> More...

 


Practical information

Unit Director
Thomas PREAT
thomas.preat (arobase) espci.fr

Deputy Director
Philippe FAURE
philippe.faure (arobase) espci.fr

Administrator
Hélène Geoffroy
helene.geoffroy (arobase) espci.fr

Jeldy Cubas Hernandez
jeldy.cubas-hernandez (arobase) espci.fr

Phone : +33 (0) 1 40 79 43 02

To contact us