Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation

Nature Metabolism 2022 4, pages 213–224 (2022)

Bryon Silva, Olivier L. Mantha, Johann Schor, Alberto Pascual, Pierre-Yves Plaçais, Alice Pavlowsky & Thomas Preat

Abstract

During starvation, mammalian brains can adapt their metabolism, switching from glucose to alternative peripheral fuel sources. In the Drosophila starved brain, memory formation is subject to adaptative plasticity, but whether this adaptive plasticity relies on metabolic adaptation remains unclear. Here we show that during starvation, neurons of the fly olfactory memory centre import and use ketone bodies (KBs) as an energy substrate to sustain aversive memory formation. We identify local providers within the brain, the cortex glia, that use their own lipid store to synthesize KBs before exporting them to neurons via monocarboxylate transporters. Finally, we show that the master energy sensor AMP-activated protein kinase regulates both lipid mobilization and KB export in cortex glia. Our data provide a general schema of the metabolic interactions within the brain to support memory when glucose is scarce.


Haut de page



À lire aussi...

Informations Pratiques

Directeur d’unité Thomas PREAT Directeur Adjoint Philippe FAURE Administratrice Hélène Geoffroy Gestionnaire Jeldy Cubas Hernandez Tél : +33 (0) 1 40 (...) 

> Lire la suite...

Jeudi 13 Octobre 2022 - Raouf ISSA- Titre : "Two for the price of one : the post-developmental role of Hox genes in maintaining behavior in larval and adult flies“

 

> Lire la suite...